[:: Archiv ::] :: Nach Themen geordnet :: |
:: |
Alltagsphysik |
:: |
Astronomie und Astrophysik |
:: |
Biophysik |
:: |
Chemie |
:: |
Chemische Physik |
:: |
Computer und Physik |
:: |
Forschungspolitik |
:: |
Gravitation |
:: |
Geophysik |
:: |
Ingenieurskunst, Technik, Geräte, Neuentwicklungen |
:: |
Kernphysik |
:: |
Materialwissenschaft, Mechanik, Wärmelehre |
:: |
Mathematik |
:: |
Meinung |
:: |
Nano .... |
:: |
Neue grundlegende Erkenntnisse in der Physik |
:: |
Nicht ganz ernst |
:: |
Optik, Quantenoptik, Magnetismus, Elektrizität |
:: |
Physikalisches Spielzeug und Experimente zum selbermachen |
:: |
Physik in Schule und Hochschule |
:: |
Planeten und Monde |
:: |
Quasikristalle |
:: |
Reblogging |
:: |
Sonstiges |
:: |
Supraleitung, Bose-Einstein, ... |
:: |
Wissenschaftler |
:: |
Wissenschaftsgeschichte |
|
[:: Archiv ::] :: Nach Datum geordnet :: |
|
|
:: 20.11.02 ::
Über zwei Symmetrien - CPT und Lorentzinvarianz -, bei denen viele Physiker glauben, dass sie sehr genau von der Natur eingehalten werden, gibt es eine neue theoretische Erkenntnis. Eine Theorie der Elementarteilchen (eine wechselwirkende Quantenfeldtheorie), die die CPT-Invarianz verletzt, ist notwendigerweise nicht Lorentzinvariant. CPT besagt, dass wenn man ein Teilchen in Antiteilchen verwandelt (C), es spiegelt (P) und die Zeitrichtung umkehrt (T) die Welt wieder genauso aussieht wie vorher (genauer die physikalischen Gesetzte invariant unter CPT ) sind. Lorentz-invariant besagt, dass Experimente immer gleich ablaufen, egal wo, egal wann, egal in welcher Richtung und egal bei welcher (konstanten) Geschwindigkeit gemessen wird.
Umgekehrt muss bei CPT-Invarianz die Lorentz-Invarianz nicht unbedingt gelten.
:: Peter 16:21 :: link ::
::
...
|